Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Fish Shellfish Immunol ; 120: 314-324, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1559895

ABSTRACT

Infectious hematopoietic necrosis virus (IHNV) is the vital pathogen that has caused the great economic loss in salmonid fisheries. To date, there is limited information concerning the changes of lncRNAs in RTG-2 cells infected by IHNV. In this study, a comparative transcriptome analysis of lncRNAs was performed in RTG-2 cells with and without IHNV infection to determine their changes and the effects on IHNV infection. The results showed that IHNV infection significantly changed the expression levels of lncRNAs and mRNAs, including 3693 differentially expressed lncRNAs (DE-lncRNAs) and 3503 differentially expressed mRNAs (DE-mRNAs) respectively. These DE-lncRNAs and DE-mRNAs induced by IHNV were mostly associated with immune response, RNA processing, and viral diseases related pathways. Further analysis found that some DE-lncRNAs might participate in the regulation of extracellular matrix metabolism, apoptosis, lipid synthesis, autophagy, and immune responses referring to the functions of their target genes. Afterwards, 349 co-expression relationships were constructed by 223 DE-lncRNAs and 271 DE-mRNAs, of which LTCONS_00146935 was the pivotal node in the interaction networks, and was together with its target genes modulated the immune responses under the IHNV infection. RT-qPCR results showed that the changes of the selected immune-related DEGs were in consistent with the RNA-seq data, suggesting that the sequencing data was relatively reliable. In summary, this is the first study to determine the changes and interactions of lncRNA-mRNA in RTG-2 cells under the IHNV infection. The results provided the valuable information concerning the lncRNAs in salmonid fish, which will benefit for future study on uncovering the roles of lncRNAs-mRNAs during the viral infection.


Subject(s)
Infectious hematopoietic necrosis virus , RNA, Long Noncoding , Rhabdoviridae Infections/veterinary , Transcriptome , Animals , Cell Line/virology , Fish Diseases/genetics , Fish Diseases/virology , Gene Expression Profiling/veterinary , Oncorhynchus mykiss , RNA, Long Noncoding/genetics , RNA, Messenger , RNA-Seq , Rhabdoviridae Infections/genetics
2.
Commun Biol ; 4(1): 1102, 2021 09 20.
Article in English | MEDLINE | ID: covidwho-1428909

ABSTRACT

Emerging variants of SARS-CoV-2 have been shown to rapidly replace original circulating strains in humans soon after they emerged. There is a lack of experimental evidence to explain how these natural occurring variants spread more efficiently than existing strains of SARS-CoV-2 in transmission. We found that the Alpha variant (B.1.1.7) increased competitive fitness over earlier parental D614G lineages in in-vitro and in-vivo systems. Using hamster transmission model, we further demonstrated that the Alpha variant is able to replicate and shed more efficiently in the nasal cavity of hamsters than other variants with low dose and short duration of exposure. The capability to initiate effective infection with low inocula may be one of the key factors leading to the rapid transmission of emerging variants of SARS-CoV-2.


Subject(s)
COVID-19/genetics , SARS-CoV-2/genetics , Virus Replication/genetics , Animals , COVID-19/pathology , COVID-19/transmission , Cell Line/virology , Cricetinae , Disease Models, Animal , Humans , SARS-CoV-2/pathogenicity
3.
J Extracell Vesicles ; 10(2): e12050, 2020 12.
Article in English | MEDLINE | ID: covidwho-1064378

ABSTRACT

SARS-CoV-2 entry is mediated by binding of the spike protein (S) to the surface receptor ACE2 and subsequent priming by host TMPRSS2 allowing membrane fusion. Here, we produced extracellular vesicles (EVs) exposing ACE2 and demonstrate that ACE2-EVs are efficient decoys for SARS-CoV-2 S protein-containing lentivirus. Reduction of infectivity positively correlates with the level of ACE2, is much more efficient than with soluble ACE2 and further enhanced by the inclusion of TMPRSS2.


Subject(s)
Angiotensin-Converting Enzyme 2/chemistry , COVID-19/prevention & control , COVID-19/virology , Angiotensin-Converting Enzyme 2/physiology , Caco-2 Cells/virology , Cell Line/virology , Extracellular Vesicles/metabolism , Humans , Lentivirus , Receptors, Virus/metabolism , SARS-CoV-2 , Serine Endopeptidases/metabolism , Spike Glycoprotein, Coronavirus , Virus Internalization
4.
J Gen Virol ; 101(9): 925-940, 2020 09.
Article in English | MEDLINE | ID: covidwho-610420

ABSTRACT

The sudden emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at the end of 2019 from the Chinese province of Hubei and its subsequent pandemic spread highlight the importance of understanding the full molecular details of coronavirus infection and pathogenesis. Here, we compared a variety of replication features of SARS-CoV-2 and SARS-CoV and analysed the cytopathology caused by the two closely related viruses in the commonly used Vero E6 cell line. Compared to SARS-CoV, SARS-CoV-2 generated higher levels of intracellular viral RNA, but strikingly about 50-fold less infectious viral progeny was recovered from the culture medium. Immunofluorescence microscopy of SARS-CoV-2-infected cells established extensive cross-reactivity of antisera previously raised against a variety of non-structural proteins, membrane and nucleocapsid protein of SARS-CoV. Electron microscopy revealed that the ultrastructural changes induced by the two SARS viruses are very similar and occur within comparable time frames after infection. Furthermore, we determined that the sensitivity of the two viruses to three established inhibitors of coronavirus replication (remdesivir, alisporivir and chloroquine) is very similar, but that SARS-CoV-2 infection was substantially more sensitive to pre-treatment of cells with pegylated interferon alpha. An important difference between the two viruses is the fact that - upon passaging in Vero E6 cells - SARS-CoV-2 apparently is under strong selection pressure to acquire adaptive mutations in its spike protein gene. These mutations change or delete a putative furin-like cleavage site in the region connecting the S1 and S2 domains and result in a very prominent phenotypic change in plaque assays.


Subject(s)
Betacoronavirus/physiology , Severe acute respiratory syndrome-related coronavirus/physiology , Virus Replication/physiology , Adaptation, Biological , Animals , Antibodies, Viral/immunology , Betacoronavirus/genetics , Cell Line/ultrastructure , Cell Line/virology , Chlorocebus aethiops , Computational Biology , Conserved Sequence , Cross Reactions , Cytopathogenic Effect, Viral , High-Throughput Nucleotide Sequencing , Humans , Immune Sera/immunology , Kinetics , Mice , Microscopy, Electron , Microscopy, Fluorescence , RNA, Viral/isolation & purification , Rabbits , SARS-CoV-2 , Vero Cells/ultrastructure , Vero Cells/virology
5.
J Antibiot (Tokyo) ; 73(9): 593-602, 2020 09.
Article in English | MEDLINE | ID: covidwho-595987

ABSTRACT

Ivermectin proposes many potentials effects to treat a range of diseases, with its antimicrobial, antiviral, and anti-cancer properties as a wonder drug. It is highly effective against many microorganisms including some viruses. In this comprehensive systematic review, antiviral effects of ivermectin are summarized including in vitro and in vivo studies over the past 50 years. Several studies reported antiviral effects of ivermectin on RNA viruses such as Zika, dengue, yellow fever, West Nile, Hendra, Newcastle, Venezuelan equine encephalitis, chikungunya, Semliki Forest, Sindbis, Avian influenza A, Porcine Reproductive and Respiratory Syndrome, Human immunodeficiency virus type 1, and severe acute respiratory syndrome coronavirus 2. Furthermore, there are some studies showing antiviral effects of ivermectin against DNA viruses such as Equine herpes type 1, BK polyomavirus, pseudorabies, porcine circovirus 2, and bovine herpesvirus 1. Ivermectin plays a role in several biological mechanisms, therefore it could serve as a potential candidate in the treatment of a wide range of viruses including COVID-19 as well as other types of positive-sense single-stranded RNA viruses. In vivo studies of animal models revealed a broad range of antiviral effects of ivermectin, however, clinical trials are necessary to appraise the potential efficacy of ivermectin in clinical setting.


Subject(s)
Antiviral Agents/therapeutic use , Betacoronavirus/drug effects , DNA Viruses/drug effects , Ivermectin/therapeutic use , RNA Viruses/drug effects , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Betacoronavirus/genetics , Cell Line/virology , Disease Models, Animal , Global Health , Humans , Ivermectin/chemistry , Ivermectin/pharmacology , Molecular Structure , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL